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1 1 .  INTRODUCTION 

A digital circuit is designed for a desired application by a combination of several logic 
gates. This application involving several logic gates may be a simple or complex one. 
Different users may design digital circuits by using different combinations of logic gates 
for the same application. In selecting one of these digital circuits for that application, 
i t  is necessary to keep in mind that the chosen digital circuit should have a minimum 
number of logic gates. By seeing a digital circuit, it is not'obvious that a circuit is 
minimal or certain gales may be removed from the circuit without changing its 
operation. Boolean algebra provides a means by which logic circuitry may be expressed 
symbolically, manipulated and reduced. 

In this Unit we shall learn about three basic logic gales: AND, OR, NOT and their 
various combinations. All digital (logic) circuits operate in thc binary mode where all 
the inputs and outputs are predefined voltages representing binary digit either 1 or 0. It 
is this characteristics of the logic circuits that enables us to use boolean algebra for 
designing and analysing the digital systems. This area of digital circuitry is known as 
combinational logic where the relalionship between the inputs and outputs can be 
precisely defined by the logic summarised in a truth table. 

In the combinational logic circuits there is no memory, i.e. the output of the digital 
circuit d6is not depend upon the occurrence of a previous event. But it is very 
essential for more advanced digital circuits meant for storing and manipulating 
information to have memory. The basic memory element is a flipflop which is obtained 
by using NAND or NOR gates. In this Unit we shall learn about various kinds of 
flipflops and their operation. f digital circuitry is known as sequential 
circuits. 



Digital Electronics Objectives 

After studying this unit, you should be able to 

e describe tjle operation of AND, OR and NOT Gates and write their truth tables, 

e describe the combination of gates and write the truth tables of NAND and NOR - 
gates, 

e explain as to how a timing diagram of the output of all the logic circuits is 
obtained, 

e explain how the operation of three basic logic gates lead us to various theorems or 
mles used in the boolean algebra, 

e write boolean theorems and use algebraic method for combi~~ational logic, 

e obtain a truth table from a give boolean expression, 

e describe the operation of exclusive-OR and exclusive-NOR gates, 

0 design a half adder and describe its operation, 

e design a full adder and describe its operation, 

o design logic circuits using only NAND gates, 

e describe the construction and explain the operation of the RS flipflop, 

e describe the construction and explain the operation of clocked RS flipflop, 
D flipflop, and JK flipflop, 

e obtain the timing diagrams of the outputs of flipflops. 

11.2 LOGIC GATES 
I 

A logic gate is a digital circuit which has logical relationship between input and output 1 
voltages. There are three basic gates: AND, OR and NOT (also called inverter) gates. 
We shall now learn these gates one by one. 

2 1  AND Gate 
! 
i 

The AND gate can be understood by the circuit given in Fig. 11.1. In this circuit 
switch (s) is input and the bulb is output. Let us assign 0 to the event when the switch 
is open and 1 to the event when the switch is close. Similarly when the bulb does not 
glow we call it 0 and when the bulb glows we call it 1. With both the switches (A and 
B) off, the bulb (Y) does not glow. 

I 

+&- I 

Fig. 11.1: AND gate using switches. i I 
3 

With one of the switches off and another switch on, dnce again the bulb (Y) does not 1 
/ 

glow., However, with bath the switches (A and B) on, the bulb (Y) glow. Thus there are i 
four events which can be summarised in the form of a table which is called the truth I 
table of this circuit. This is given in Table 11.1. .The switches A and B, which controI 

b 

the input voltage are usually called input of the truth table and Y as the output. 
i 

* 



Table 11.1: Truth Table of AND Gate. 

From this table it is clear that the bulb glows (1) only when both the switches (A and 
0) are on (1). Stated in a different way, the output is 1 when both the inputs A and B 
are 1. This state of the circuit is distinct from other three states. This circuit is known 
3s the AND gate. The symbol of AND gate is given in Fig. 11.2. It is clear from the 
Fig. 11.1 that if the circuit has any number of switches in series, then the output will be 
1 if and only if all inputs are 1. Now for all times to come, you must remember that' 
For an AND gate the output is 1 if and only if all the inputs are 1. 

inputs 

A B 

0 0 

0 1 

1 0 

1 1 

Fig. 11.2: Symbol of AND gate. 

output 

Y 

0 

0 

0 

1 

Electronically the AND gatc can be realised by using two pn junction diodes as shown 
In the circuit of Fig. 11.3. The resistor R is used to control the current through 
.he diodes. As stated above, a 0 bit is assigned OV and a 1 bit is assigned 5V. 
However, such accurate values of voltage will not always be available at the output in 
:lectronic circuits. Therefore, a 0 bit is assigned a voltage range of 0 to 0.8V and a 1 
lit is assigned to a voltage range of 2.8 to 5.OV. Quite often these voltage ranges are 
.eferred to a LOW and a HIGH respectivefy. The voltages greater than 0.8V and less 
han 2.8 V are indetenninnte and hence not used. 

Fig. 11.3: Realisation of AND Gate using diodes. 

n the circuit of Fig. 11.3 when the inputs A and B are 0, i.e. when they are connected 
o the OV or ground terminal, both the diodes are forward biased with a voltage drop of 
).7V across each diode if the diodes are of Si or of 0.3V if the diodes are of Ge. Hence 
he output voltage is a LOW or a 0 bit. If the input A is 0 and B is 1 (i.e. SV), the 
liode A is forward biased with 0.7V drop across it (assuming diode to be of Si) while 
lie diode B is not biased (because both p and n sides of the diode are at the same 
oltage, 5V). Therefore the output voltage is 0,7V, i s .  a LOW or a 0 bit. Similarly, if 
ie input A is 1 and input B is 0, the output is a 0. However, if both inputs are 1, i.e. 
onnected to 5V, then both the sides of the diodes are nt the same voltage and hence 
ot conducting. Therefore, the output voltage is nothing but the battery voltage which is 
V, i.e. a HIGH or a 1 bit. These four cases satisfy the truth table of Table 11.1. For 
lore input AND gate, the number of diodes may be more. The input output relationship 
f the AND gate is written as A.B = Y and is read ns A AND B equal to Y. 

Fundamenlnls of Boolean 
Algebra and Fllp Flops 



Example 11.1 

If tl$k inputs A and B to the AND gate are as shown in Fig. 11.4, trace the output Y. 

Fig. 11.4: 

Solution 

Recall that output of an AND gate is 1 when all the inputs are 1. If any of the inputs 
'is 0, then the output is  0. With this understanding, h e  output comes out to be as' shown 
in the trace for Y. 

SAQ 1 

Trace the output of an AND gate, if the inputs A and B are as shown in Fig. 11.5. 

Pig. 11.5: I 
11.2.2 OR Gate - - .  

The OR gate operation can be understood by the circuit of Fig. 11.4. If both the 
switchos are off, (O), the bulb does not glow (0). If one of the switches is on (1) and 
other is off (O), the bulb glows (1). And if both the switches are on (I), then $so 
the bulb glows (1). These events are summarised in the truth table given in 

' 

Table 11.2. 
I .  



TaBle 11.2: Truth Table 0f.m Gate. 

t is clear from the truth table that the output of OR gate is 0 if hoth the inputs are 0 
nd the output is 1 if any one of the inputs or both the inputs are 1. If a larger number 
IF switches are used in parallel in the circuit, then the bulb does not glow if all the 
witches are off, and the bulb glows if any one of the switches is on. The sylnbol of 
>R gate is given in Fig. 11.7. The OR gate operation is expressed as A + B = Y and 
s read as A O R B  = Y. 

Fig. 11.7: Symbol of OR gate. 

3lectronically OR gate can be realised by using two pn junction diodes as shown in the 
:ircuit of Fig. 11.8. If both the inputs are 0, that is connected to the ground, then the 
liodes are not biased and hence no current flows through the diodes. 'The output is zero 
Jr a 0 bit. If the inputs to diode A is 0 and B is 1 (i.e. 5V), then the diode A is not . 
~iased and tllus does not conduct, but the diodc B is forward biased with a 0.7V drop 
lcross it and 4.3V drop across the resistor. Thus the output is a HlGH or a 1 bit. 
Similarly, if the inputs to the diodc A is 1 and diode 13 is 0, the output is 1. When the 
nputs to both the diodes A and B are 1, both the diodes are forward biased, the voltage 
jrop across the resistor R continues to be 4.3V. Hence, the output is a 1. hit. All these 
Four cases satisfy the truth table of OR gate. A more input OR gate is obtained by using 
rnore diodes in the circuit. Analysing the truth table of OR gate, we learn that the 
output is 0 if both or all the inputs are 0, and the output is 1 if a t  lcost one of the 
input is 1. 

Fig. 11.8: Realisation of OR gate using diodes. 

Example 11.2 

If tlie inputs A and B to OR gate are as shown in Fig. 11.9, trace the output Y. 

Xecall that the output of an OR gate is 1 if any of the input is 1, and the output is 0 if 
111 the inputs are 0. With this understanding, the output comes out to be as shown in the 
race for Y. 



Digital Electronics 

Fig. 11.9: 

SAQ 2 

Trace the output of an OK gate if the inputs A and B are as shown in  Fie. 1 [ . In 

11.2.3 NOT Gate 

The NOT gate can be understood by considcring the elcctl-ical circuit sllown it )  
Fig. 11.1 1. Let us assign a 0 bit to the even when bulb does not glow and 1 bit to rhe 
event when bulb glows, and a 0 bit to switch off and 1 bit to switch closed. In 
Fig. 11.1 1, when switch is closed, no cusrent will pass through the bulb and the 11~1lb 
will not glow. This is because thc current always Ilow through the least resistance pidh. 
Similarly, when the switch is open thcn the whole current will flow through the bulb 
making i t  glow. 

Fig. 11.11: NOT gnte using a switch. 

If input to the circuit is 1, thc output is 0 and if the input is 0 then the output is 1. This 
is the NOT gate operation which is surnmarised in thc truth table given in Table 11.3. 

Table 11.3: Truth table for NOT gate. 



The NOT gate is also known as INVERTER. It has only one input. Its sylnbol is given Funda~nentals of Boolean 

in Fig. 11.12. The input-output relationship is expressed as A = Y. . Algebia and li'lip Flops 

Fig. 11.12: Symbol of NOT gate. 

The NOT gate can be realised using the circuit given in Fig. 11.13. The circuit uses 
the cutoff and saturation modes of the transistor. When the input to the circuit is a 
0 hit, i s .  zero volt, no base current, In. Ilows. This means the collector current, I':, is 
zero. This is culoff mode of [he transistor. 

Fig. 11.13: Reillisation of NOT gate using a transistor. 

'rlicrefore, (he output voltage is the bias voltage of 5V indicating the output to be a I 
bil. Whcn the ~ I I ~ L I L  lo the circuit is a 1 bit, i.e. 5V, very large Is flows resulting in very 
large Ic, in fact I, ,,,. This is the saturation mode of the transistor. This indicates that 
most ol' the bias voltage is dropped across R, with output to be a 0 bit. 

IF lhe input A to NOT gate is as shown i tr  Pig. 11.14, trace the output Y. 

Pig. 11.14: 

Solution 

Rccall [hat thc output of' a NOT gate is I if the input is 0, and (he output is 0 if the 
input is I .  With  his understanding, the output comes out to be as shown in the trace 
for Y in Fig. 11.14 

SAQ 3 

Trace Lhe output of a NOT gate if thc input is as shown in Fig. 11.15. 



Fig. 11.15: 

11.2.4 Combination of Logic Gates 

The AND, OR and NOT gates are the fundamental gates for all digital circuits. These 
gates can be combined with each other for a particular application. However, two types 
of colnbinations are very important as you will learn now. 

NAND Gate 

Fig. 11.16: Combination of AND and NOT gate. 

BU 
Fig. i1.17: Symbol of NAND gate. 

If the output of an AND gate is given to the input of a NOT gate, as shown in 
Fig. 11.16, the resulting circuit is known as NAND gate the symbol for which is 
s l ~ o w ~ ~  in Pig. 11.17. The truth table of this gate is obtained as follows: 1 

A B Y' (AB) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Thus the truth table of NAND gate is shown in Table 11.4. I 

Table 11.4: Trutli table for NAND gate. ! 

The input-output relationship of a NAND gate is expressed as A.B = Y. The NAND 
gate is known as the building block for the digital circuits because using NAND gates, 
one can obtain AND, OR and NOT gates. This aspect will he explained later. 



NOR gate Fundamentals of Boolean 
Algebra and FUQ W o p  

..-" . . 

' . .Fig. 11.18: ~ombina~on,.of OR and NOT gate. 

Fig. 11.19: sylnW d NOR gats. 

Thus the truth table of a NOR gate is shown in Tabla 11.5. 

If the output of an OR gate is given to the input of a NOT gate, as shown in 
Fig. 11.18, the resulting circuit js known as NOR gate the symbol for which is shown 
in Fig.' 11.19. The truth table of this gate is obtained as follows: 

A B Y O ( A + B )  Y 

Table 115: T q d  tablq lor NOR gate. 

0 0 0 

The input-output relationship of d NOR gate is expressed as A + B = Y. The NOR gate 
is also known as the building .block for the digital circuits because using NOR gates 
one can obtain AND, b~ and NOT gates. 

1 

Example 11.4 

If the inputs A and B to NAND gate are as shown in Fig. 1 I .20, trace the output Y. 



Solution 

Recall that the output of a NAND gate is 0 only when all the inputs are I ,  and its 
output is 1 if any or all of the inputs islare 0. With this understanding, the output colnes 
out to be as shown in the trace for Y. 

SAQ 4 

If the inputs A and.B to a NOR gate are as shown in Fig. 11.21, trace its output Y. 
(Hint. Apply truth table 1 1.5). 

Fig. 11.21 

- ----. 

- 
11.3 BOOLEAN ALGEBRA 

In this section we shall learn about the Boolean algebra which provides the methodology, 
for reduciflg a complex digital circuit into a simple one. This methodology includes tlie 
following: 

1) The logic operations are written in the form of a Boolean expression. 
P- 

.2) From the given truth table, a boolean expression can be obtained which may not 
represent a simple circuit having mini~num number of gates. 

3) The boolean expression may then be simplified to get a digital circuit having 
minimum number of gates. 

Consider the digital circuit given in Fig. 11.22. It has five logic gntes of three types - 

I + 
Pig. 11,22: Digltal circuit using five gates. 

34 
Fig. 11.23: Digital circuit having the same operation as that of the circuit given 

in Fig. 11.22. 
-- 

* n ~  



three 2-input AND gates, one 2-input OR gate and one 3-input OR gate. Its logic table, Rundamentals of Boolean! 

is given in Table 11.6. This circuit can be reduced to the one shown in Fig. 11.23 Algebra and F!ip Flops 

which has only two logic gates and is considerably cheaper and simple. It fully satisfies 
the logic Table 11.6. 

Table 11.6 

The root of its initihj assumptions, known as boolean postulates, lies in the truth tables 
of the logic .gates described in the previous section: Let us recall that 111e AND operation 
has been described by the sign of multiplication (a), that is logical multiplication. Most 
often we do not use this sign (.), e.g. A-B = AB. Similarly the OR Operation has been 
described by the sign of addition (+), that is logical addition. And the NOT operation 
has been dcs&ibed as a bar (-) over the variable, that is logical inversion or 
complementation. These three operations are the basic Boolean operations based upon 
which we shall develop the Boolean algebra. 

Since the number of bits used in binary system is only two, i.e. 0  and 1, there could be 
only.four pcssible co~nbinations of inputs A and B to Zinput 'AND and OR gates, and 
two possible inputs to NOT gate. The logical tables of AND, OR and NOT gates are 
rewritten in Table 1  1.7. 

Table 11.7: Truth tables of AND, OR and NOT gates, 

AND OR NOT 

These logic tables lead to ten postulates of the boolean algebra, each of which describes 
the input-output relationship of the concerned logic gate in the form of boolean 
expression and is one of the truth table entries for AND, OR, NOT functions. These are: 

Table 11.8: Boolean expression for AND, OR and NOT gates. i 

C 

AND operation . OR operation NOT operation 
- 

o . o = o  O + O = O '  0 - 1  
- 

0 . 1 = 0  0 + 1 = 1  1 = 0  

I , o = o  1  + o =  1  

1 . 1 = 1  1 + 1 = 1  



1)lgital Electronics 

4 

It is quite clear from these equations that all the four Boolean equations using A m  
operation satisfy the binary multiplication using bits 0 and 1. However, in the case of 1 
OR operation, while first three Boolean equation satisfy binary addition, but the last I 

equation 1 + 1 = 1 does not. It is because in binary arithmetic 1 + 1 = 10. Despite this 1 
contradiction between Boolean and binary additions which will be settled later, the J 

Boolean operations are very helpful in digital circuits. The Table 11.8 will lead us to 1 
various Boolean theorems which will be described in the following section. i 

i 

For the moment let us see how Boolean equations are written and used for n digital 
circuit. Consider the circuit of Fig. 11.24 in which A and B are the inputs to AND gate ' 

Fig. 11.24:-Digital circuit for Y = A -B  + C. 

while. C is one of the inputs to OR gate. 'Another input to OR gate is the output of 
AND gate, i.e. AB. The output gf this combination is Y which is 

Let us find Y if, say, A = 0, B =: 1, and C = 1. 

From Table 11.8, 0.1 = 0, so 

From Table 11.8, 0 + 1 = 1. Hence, 

Y = I.. 

Let us now convert a given Boolean expression into a logic circuit. Say, Y = (XVB) + 
( ~ 3 ) .  The equation means that Y is the output of a Zinput OR gate the inputs to 
which are X-B and A.B which in turn are the outputs of two AND gates. The illputs to 
these AND gates are and B and A and B respectively. The whole of this exercise is 
summarised in the Fig, 11.25. 

/- B .  r-' 

Rg. 11.25: Conversion of a boolean expression Y = XB + AE into a digital circuit 



11.3.1 Boolean Theorems 

Recalling Table 11.8 we can now write several identities or, theorems which are used in 
Boolean algebra. It is also worthwhile to recall that 

A. i) Output of an AND gate is 1 only when all the inputs are 1. 

ii) Output of an AND gate is 0 when all or any of the inputs is 0. 

B. i) Output of an OR gate is 0 when a11 the inputs are 0. 

ii) Output of :m OK gate is 1 when either of the inputs or all tl~e inputs are 1. 

C. Output of a NOT gate is inversion of its input. 

From these conclusions and postulates, we derive the following properties or nllesflaw/ 
theorems: 

From AND function, 

From OR functions, 

Combination variable with itself or its complement. 

From double complementation. 
, 

13. X = X  
cdmmutative laws for multiplication and addition. These laws show that the order in 
which two variables are ORed or ANDed together rnakes no difference. 

Associative laws for addition and multiplication. These laws show while ORing or 
ANDing several variables, it makes no difference in what order the variables are 
grouped. 

16. X+(Y+Z)=(X+Y)+Z- X + Y + Z  

17. X (YZ) = (XY) Z = XYZ 

Distributive laws. 

18, X.(Y + Z) = (X-Y) + (X-Z) 

Fundamentnls of Bntrltsm 
Algebra and Flip Flops 



Digitol Electronics Note here that commutative, associative and distributive laws are similar to ordinary 
I 
I 

algebra. i 
Absorption laws. ~ h e s e  have no counterpart in ordinary algebra. 

DeMorgan's theorems. First theorem says that the complement of a sum is equal to the 
product of complements: 
- - -  

25. X + Y = X . Y  I 

Second theorem says that the complement of a product is equal to the sum of I 

complements. 
7 - 

26, X . Y = X + Y  

These theorems are valid even when the variables are expressions. There is no algebraic 
proof of these theorems. However, each theoremflaw can be proved by putting the 
values (0 or 1) of variables and applying boolean postulates given in Table 11.8. 

11.3.2 Algebraic Method for Combinational Logic - 

We have now know that a logic circuit can be expressed in the form of boolean 
expression which, in turn, can be simplified using boolean laws. We have also known 
that a boolean expression can also be transformed into an equivalent logic circuit. 

Before we learn the simplification method and other techniques, let us understand the 
meaning of combinational logic. Whenever a logic circuit is explicitly defined by its 
truth table to provide a fixed, invariant relationship between input and output, the circuit 
is called the combinational circuit. A combinational circuit does not have a memory. It 
always operates in accordance with its truth table regardless of any prior input which 
may have been given to the circuit. This will be further understood after we have taken 
up some examples. 

A boolean expression can be simplified in either of the two forms - (a) Sum of Produ~ct 
(SOP), and (b) Product of Sum (POS). We shall limit ourselves to only S b P  form 
which is most commonly used. Object of simplification is to minimise the number of 
variables or occurrences of a variable in an expression. This means minimising operation 
symbols and hence the number of gates to be used in the circuit. Many a times we gel 
more than one simpIified fonn of an expression, each being equivalent in number of 
gates and variables to be used. In final analysis, we shall use the Minimum Sum of 
Product (MSP) form which is written without brackets. Consider the reduced expressiol-i . 
A (B + C) which is written in MSP form AB + AC. While the reduced expression / 
requires one AND gate and one OR gate, the MSP expression requires one AND gates 
and one OR gate. Thus in this case MSP expression is not the simplest. Fundamental 
rule is tha the expression must be (a) reduced as much as possible, and (b), written 
without 8 rackets. For the simplification of boolean expression, boolean operations should 
be carried out in the following order: 

1) Inversion of single variables. 

2) All operations with brackets. 

3) AND operations before OR operations. 

4) OR operatians. I 
5 )  If an expression is with a bar, then before inverting perform all operations. I 



Example 11.5 

1) Find the MSP expression for 

Y = ( K + i i ) F + f i  

= (K + B) F + (A + B) Using DeMorgan's themem, Th. 26 

= (A+B)[C+ 11 Taking (x + g) common 

= (A+B) . I  Using ~ h .  7 

= (ii + g) Using Th. 3 

= MSP expression. 

The logic circuits for the given and the MSP expressions are shown in Figs 11.26 and 
1 1.27 respectively. 

- - -  
IN ~ .  11.26: Digital circuit for Y = (A + B) C + G. 

I 

lqg. 11.27: Digital circuit idr Y = K + 8. 

Example 11.6 

Find the MSP expression for 
- 

Y = AC + AB (g + C) 

= Kc + ABB + ABC 
- 

= A C + A . O + A B C  Using Th. 10 . 
- 

= AC'+ ABC Using Th. 1 

= (A + AB) C Taking C common 

= (K + B)C Using Th. 23 

= XC + BC 

= MSP expression 



L)fgital Electronics The logic circuits for the given and the MSP expressions are shown in Figs. 11-28 and 
11.29 respectively. 

- 
Pig. 11.28: Digital circuit for Y = AC + AB (5 + C). 

- 
Fig. 11.29: Digital circuit for Y = AC + BC. 

Example 11.7 

Find the MSP expression for 

Y = A B + A ( B + C ) + B ( B + C )  

= AB i- AB +AC + BB + BC 

Using fi. 9 = A B + A B + A C + B + B C  
1 

= A B i - A C + B + B C  Using Th. '1 1  1 

i 
= AB i- AC + B(l + C) Taking B common i 
= A B + A C + B . l  Using Th. 8 

Using Th. 3 = A B + A C + B  

= 1 . B  + A C  Using Th. 7 

= B + A C  Using Th. 4 

= . MSP expression. 

The logic circuits for the given and the MSP expressions me shown in Figs. 11.22 and 
1 1.23 respectively. 

SAQ 5 

Find the MSP expression for Y = at? + A B ~  + ABC. 



11.3.3 Obtaining a Truth Table from a Boolean Expression 

A simplest method of obtaining the truth table from a boolean expression has already 
been mentioned. That is, substitute the values of variables in each possible co~nbinations 
of values in the expression. Perform all the Iogic operations and get the,result for each 
combination. For example, 

In this expression, say, A = 1, B = 0, and C = 0, then 

Similarly, find Y for all combinations of values for A, B, and C, and complete the truth 
table which is given in Table 11.9. 

Table 11.9: Truth table for Y = AB + A (B + C) + B (B + C) 

The alternative method of obtaining a truth table from a boolean expression involves 
reasoning. Ask yourselfi 

When shall the output of the expression be 1. Consider tho expression 

Y = AE -I- BC = MSP expression 

This expression is 1 so long as either AE or BC is 1. Therefore, put Y = 1 for all 
entries of AE = 1 (i.e, entries 5 and 7). Then put Y = 1 for all entries of BC = 1 (i.e. 
entries 4 and 8). Now, Y for d l  other entries is 0. Table 11.10 is thus the truth table for 
the given expression. 

Table 11.10: Truth table for Y = A? + BC. 

Fundamentals o f  Bealean 
Algebra and Flip Flupz 



Digital Eleclronlcs Hence, it is better to use the method of reasoning for obtaining the truth table. This 
method involves just two steps: 

1) Obtain the MSP form of the given boolean expression, and 

2) Reason G U ~  which of the truth table entries should be 1 for each product in MSp 
form. 

Example 11.8 

Obtain the truth table for the boolean expression Y = A + AB + BCD. 

Y = A + A B  t B C D  

= A (1 + B) + BCD 

= A . 1  +BCD 

= A +  BCD 

= MSP expression 

Reasoning out we rind that Y = 1 whenever A = 1 or the product BCD = 1. Therefore, 
in the truth table for this expression, put Y = 1 for all entries of A = 1, (i.e. entries 9 
to 16) and put Y = 1 for all entries of product BCD = 1 (i.e. entries 8 and 16). For all 
other entries pul Y = 0 (i.e, entries 1 to 7). The complete trulh table is given in 
Table 11.11. 

Table 11.11: Truth table for Y = A + AB + BCD. 

SAQ 6 

Obtain the truth table for Y = AB + BC + CA. 

11.3.4 Obtaining a Boolean Expression from a Truth Table 

Consider the truth table given in Table 11.12. 



Table 11.12: Given truth table. 

Note, that the entries 5, 7, and 8 contribute a logic 1 to the operation while all other * 

entries give a logic 0. To obtain the boolean expression, we need only write a product 
term for each entry that contribute a logic 1, and then assemble the operations by 
connecting all the products with a logic OR. Do as follows. 

Bntry5: Y = l f o r A =  l , B = O , C = O  
-- 

= ABC 

because the output of an AND gate wili-be 1 only if all the inputs are 1. Similarly, 

Entry8: Y = l f o r A = l , B = l , C = l  

= ABC. 

Now connect all the three products with an OR logic. Hence 

Y = ABE + ABC + ABC (Sum of P ~ O ~ U C ~ )  

Which can be simplified as 

.Y = A ~ C + A B ( C + C )  

= A E C +  AB 

= A ( % E + B )  

= A (B + C) 
= AB + AC 

The procedure can be summarised as follows: 

1)  Combine with an AND operation all the input variables for the entries that 
contribute a logic 1. 

2) Select for each variable in the product an overbar or no overbar so that when the 
input values of the entries are substituted, the product gives a logic 1. These 
products are also known as fundamental products. 

3) The products are assembled with an OR ope,$htion. 

4) The sum of product expression thus obtain& may not be minimal. Use boolean 
algebra to bring an SP expression in an MSP form. 

SAQ 7 

Obtain the boolean expression for the truth table given below: 
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11.3.5 Exclusive - OR (XOR) Gate 

An XOR gate gives a high output (i.e. 1) when an odd number of inputs is high. A 
two-input exclusive - OR gate has its output 1 if one of the two inputs is 1 and the 
other is 0, and if both the inputs are same then the output is 0. The truth table of an 
XOR gate is given in Table 11.13. 

Table 11.13: Truth table for XOR gate. 

Its boolean expression is obtained from the entries 2 and 3, that is 

Y = X B + A E  
This expression is in M$P form because it can not be simplified further. Thus Y is the 
outpq of an OR gate the inputs to which are & and A:, which in turn are the outputs 
of two AND gates. The circuit thus obtained for m- XOR gate is given in Fig. 11.30 
and it is represented by the symbol shown in Fig. 11.31. The XOR operation is 
expressed by @ . 

Fig. 1130: Exclusive - OR (XOR) gate. 

A B - - J ~ Y = A @ B  

Fig. 1131: Symbol of XOR .gate. 

)i 



11.3.6 Exclusive -- NOR @NOR) Gate 

An exclusive -NOR gate has its output 1 if both the inputs are same, and if both the 
inputs are different then the output is 0. The truth table of an XNOR gate is given in 
Table 11.14. 

Table 11.14: Truth table for XNOR gate. 

Itsjoolcan expression is obtained from the entries 1 and 4, that is 

This expression is in MSP iorm because it cannot be simplified further. Thus Y is the 
output of an OR gate the inputs to whicl~ arc AB and AB, which in turn are the outputs 
of two AND gates. The circuit thus obtained for an XNOR gate is given in Fig. 11.32 
and is represented by the symbol shown in Ag. 33. 

Fig. 11.32: Exclusive -NOR (XNOR) gate. 

=IC- 
Fig. 1133: Symbol of XNOR gate. 

11.3.7 Addition of Two One Bit Binary Numbers (Half Adder) 

Recall the binary addition learnt in Unit 10. The binary addition of two single bit binary 
numbers is as follows. 

Fundamentah of Bwl,)ea~ 
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Digital Electronics In this exalnple of addition, the bit on the right hand side is sum while the bit on the 
lefl hand side is cany. This can be put in  a truth table as shown i n  Table 11.15. . 

Table 11.15: Truth table for half adder. 

This application has two outputs, one for 'sum' and another for 'carry'. Therefore, we 
have to obtain two boolean expressions for the two outputs. 

A B 

0 0 

0 1 

1 0  

1 1  

The expression for carry is 

Carry Sum 

0 0 

0 1 

0 1 

1 0 

Carry = AB 

that is, it is the output of an AND gate. 

The expression for sum is 

Sum :-- AB + AB 
that is, it is the output of an XOR gate described in the previous section. These two 
circuits are connected together as shown in Fig. 11.34. This circuit is known as half 
adder and its symbol is given in Fig. 11.35. 

:rQ Carry Sum 

Fig. 1134: Half adder circuit. 

~ i ~ :  1135: Symbol of half adder. 

Recall the contradiction pointed out while describing addition by an OR gate. While it 
could justify addition in case of its first three entries of inputs, it could not give correct 
result of addition of binary numbers in its last entry of inputs, i.e. it gave 1 + 1 = 1 
(boolean addition) rather than 1 + 1 = 10 (binary addition). This contradiction is now 
taken care of by the design of half adder. We can now say that the binary addition 
should be done using half adder or circuits described later in the Unit. But as far as 
boolean postulates, including based on OR gate, are concerned, they are helpful in 
designing circuits for binary arithmetic. , 



11.3.8 Addition of Three One Bit Binary Numbers (Full Adder) 

The full adder can add three single-bit binary numbers. The binary addition three single- 
bit binary numtiers is as follows: 

The right hand bits of, these additions represent the sum and the left hand bits represent 
the carry. These eight possible combinatiqns of three single-bit binary numbers can be 
presented in the form of a truth table given in Table 11.16. 

In order to design the logic circuit for a full adder boolean expressions have to be 
written and simplified in MSP form for both sum and carry which are as follows: 

Table 11.16: Truth table for full adder. 

Sum = XEC + XBE + ABC + ABC 

A B C  

0 '0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

where X = B @ C 
* 

Carry Sum 

0 0 

0 1 

0 1 

1 0 

0 1 

1 0 

1 0 

1 1 

= MSP expression. 

This is the output of a 3-input XOR gate. 

Carry = ABC + ABC + ABC + ABC 

= BC(A + A) + AGC + ABC 
= BC + ABC + ABC 
= . C(B + AB) + ABC 
= C(B +-A) + ABC 

= ' BC + AC + ABC 
= BC + A(C + BE) 

= MSP expression. 

Pundam~ntals ot Boalunn 
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Digital Electronics From these two MSP expressions, the logic circuit for a full adder can be obtained 
as described earlier. This circuit is given in Fig. 11.36 and its symbol is given in 
Fig. 11 37. 

Fig. 1136: f i l l  adder circuit. 

Fig. 11.37: Symbol of full adder. 
d' 

You would recall that a computer or a digital circuit can add only two binary numbes at 
a time. If a digital circuit has to add more than two binary numbers, as would mostly.be 
the case, the circuit will add first two binary numbers and to the sum of these two 
numbers it will add the third binary number, and so on. But while adding two bits a 
carry is likely to appear as shown above. Therefore if the two binary numbers to be 
added are having more than one bit, then after the addition of first bits of the numbers 
the addition of second bits will also require the addition of any carry which appears 
from the addition of first bits. Thus the addjtion of first bits can be carried out by the 
half adder which has two inputs, but the addition of second bits require a 3-input adder 
which is realised by the full adder. There are eight entries to the truth table of a full 
adder, half of which are satisfied by the truth table of half adder ignoring carry bit 
(because the addition of first bits of two numbers do not have a carry to be added). For 
this reason, the adder described in the previous section is called the half adder and the 
described in this section is called the full adder. 

Example 11.8 

Addition of two 4-bit binary numbers. Let us say the numbers are A,bA,A, and 
B,B,B,B,. This addition requires one half adder to add 4 and Bo and three full adders 
to add rest of the bits as shown in the circuit of Fig. 11,30; The outputs of the half 
adder are sum (So) and carry. The carry output of the half adder is given as the third 
input to the first full adder which has a carry output and a sum (S,) output. The carry 
output of the first full adder is given to the second full adder, and so on. Thus for 
addition of two 4-bit binary numbers, we require one half adder and three full 
adders. For each additional bit in the numbers to be added, we require one more 
full adder. 



F~~ndamentals of Boolean 
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Cu S3 S2 Sl So 

Fig. 11.38: A 4-bit binary adder. 

SAQ 8 

Draw a digital circuit for a 2-bit binary adder. 

11.3.9 Designing Circuits Using NAND Gates Only 

Quite often it is required that only NAND gates should be used in designing digital 
circuits. The NAND gate being universal can be used to realise AND, OR and NOT 
gates. Therefore, wherever these-gates are appearing, the equivalent NAND circuit is 
used. The realisation oP AND, OR and NOT gates from NAND gates is shown in 
Fig. 11.39. 

Fig. 11.39: Realisation of (a) AND, (b) OR, and (c) NOT gates using NAND gates. 

Example 11.9 

Design a circuit for Y = AB -+ CD using NAND gates only. 

The circuit for Y = AB + CD using AND and 0"'. gates is shown in Fip. 11.40. 

Fig. 11.40: Digital circuit for Y = AB + CD. 



Fig. 11.41: AND and OR gates in the circuit given in R g .  11.40 replaced by their equivalents. 

The AND gates and OR gate in Fig. 11.40 are  replaced by equivalent NAND gale 
circuits from Fig. 11.39 as shown in Rg. 11.41. It requires two NAND ICs. Since the 
input and output of a combination shown as dotted of a NOT gate followed by another 
NOT gate are same, therefore sucll a combirlation is useless and hence eliminate it. The 
final circuit after su&.elirnination is shown in Fig. 11.42. 

,,--L----./ CD 
Fig, 11.42: Circnit for Y = AB + CD using NAND gates. 

Another method involves the use of Demorgan's theorems. Consider the example of 
XOR gate. It requires one NOT IC, one AND IC and one OR IC, i.e. three ICs in total. 

Tl~e MSP equation for XOR gate is Y = AB t ~5. Double complement the right hand 
side and solve using DeMorgan's theorem. 

= (AB). (AB) 

The right hand side is the output of a NAND gate the inputs to which are the outputs of - - 
two NAND gates, ice. (XB) and (AZ). The final circuit for XOR gate using NAND 
gates only is shown in Fig. 11.43. Tt requires two NAND ICs. 

Fig. 11.43: Circuit for XOR gate using NAND g ~ t e s  only. 

I 

SAQ 9 

Design a digital circuit for Y = A + BC &ing NAND gates only. 



1.4 FLIPFLOPS 

We have learnt combinational logic circuits in the previous section. The combinational 
logic circuits operate strictly in accordance with their truth table. However, there are 
logic circuits which hnvc feedback path and the operation of which is not strictly 
defined by their truth tables. Such circuits operate differently for a given input condition 
depending upon the prior input sequence applied to the circuit. Such circuits arc known 
as sequential logic circuits. Thcse circuits have nlemory element also. In addition to the 
logic gates, a computer requires memory element. The simplest menlory element is a 
fljpflop. It has two stable states and remains in any one of these two stable states until 
triggered into thc other state. Quite often the flipflop is also known as a latch. 

The most basic flipflop circuit is constructed using two NAND gates or two NOR gates. 
In NAND gate flipflop, two NAND gxtes are cross-coupled as shown in Fig. 1 1.44. It 
has two latched outputs Q and '0. It has two inputs: SET (S) arid RESET (R) or 
CLEAR (C). The input names signify their actions ils well. For the input names such a 
flipflop is known as RS flipflop. 

SET 

RESET 
(CLEAR) 

-. . , . 
Pig. 11.44: RS flipflop. 

Let us now understand the working of a RS flipflop. Both the kputs, SET and RESET, 
are kcpt IIIGH, i.e. at logic 1. In the beginning, let us say S - R = 1. With the outputs 
Q = 0 and Q = 1, NAND- 1 has the inputs 1 and 1 hence Q = 0, and NAND-2 has 
inputs 1 and 0, hence 3 = I. These outputs are latched or stuck with each other and 
continue to be latched until input conditions are changed. 

Second possibility with S = I\ = 1 is when Q = I and 6 = 0. The NAND-1 will have 1 
and 0 inputs giving Q = 1. Likewise the NAND-2 will have 1 and 1 inputs giving 6 = 
0. Once again the two outputs are latched together and they will continue to be latched 
until input conditions are changed. S and R both high means the two sets of possible 
outpills remains in  its last state indefinitely because of the internal latching action. Thus, 
a high S and a high R gives us tho inactive state; the circuit stores or remembers. 
When we want to change the flipflop output one of the inputs will be pulsed LOW 
(i.e, logic 0). 

Setting the Flipflop 

Let us say that the SET is mometarily pulqed LOW (i.e. S = 0 for a moment) while 
RESET continues to be 1. Now if Q = 0 and 0 = 1 prior to the occurrence of a LOW 
pulse at SET, Q goes 1 which in turn forces Q to a 0. Thus when SET returns to 1, the 
NAND-I output remains HIGH which in turn keeps the NAND3 output at 0. 

If prior to the application of SET pulse, Q = 1 and = 0, then a LOW pulse at SET 
will not change anything because = 0 is already keeping the NAND-1 output to 1. 
Thus when SET returns to 1, the outputs are still Q = 1 and 0 = 0. 

Thus a LOW on the SET input will always cause /he flipflop to end up in Q = 1 state. 
Hence, this operation is called setting the flipflop, and Q = 1 state is known as SET 
state. 

Fundi~menttds of ll 
Allgebra nr~d Flip Flops 



Digital Electronics Resetting or Clearing the Flipflop 

The SET is kept at 1 and RESET is mo~nentarily pulsed LOW (i.e. 0). Let us say that 
prior to the pulse, Q = 0 and @ = 1. Since Q = 0 is already keeping the NAND-2 
output at 1, therefore the application of a LOW pulse at RESET will not change the 
situation. However, if prior to the application of a LOW pulse, Q = 1 and 0 = 0 , then 
a LOW pulse at RESET will give NAND-:! output as 1, which in turn forces the 
NAND-1 output to a 0. Thus a LOW at RESET always ends up in Q = 0. This 
operation is called clearing or resetting operation. And Q = 0 state is known as CLEAR 
(or RESET) state. 

When SET and CLEAR are si~nultaneously pulsed LOW, it produces 1 at both tlie 
outputs. There is a race to come to a 1 state. This is an undesired state because Q and - 
Q are inverse of each other. When R and S return to 1, race amollg the two will give 
unpredictable results. Therefore, R = S = 0 is not used. However, as described above, 
R = S = 1 produces no change in  the outputs. The entire operation of the RS flipflop is 
summarised in the truth table given in table 1 1.17. 

Table 11.17: Truth table for RS flipflop. 

S R 1 Output 

0 0 I *(Race and invalid) 

0 1 

I 0 

The DeMorgan equivalent of NAND gate is given in Fig. 11.45. Fig. 11.45 (a) represent 
the left side of DeMorgan's theorem. The right side of the theorem implies that the 
inputs are inverted before reaching an OR gate (see Fig. 11.45b). This combination is 
used so often that the abbreviated symbol shown in Fig. 11.4% has 'come into use: This 
symbol is called a bubbled OR gate. Fig. 11.45d is a graphic summary of DeMorgan's 
theorem which shows that a NAND gate and a bubbled OR gatc are equivalent. 
Therefore, we can replace one with the other whenever desired. 

Set (Q = 1) 

Reset (Q = 0) 

(d) 

Pig. 11.45: DeMorgan equivalent of NAND gate. 

Using DeMorgan equivalent of a NAND gate, the NAND gate flipflop can also be 
represented by the circuit shown in Fig. 11.46. Tho symbol of this flipflop is shown in 
Fig. 11.47. The bubble at the S and R inputs indicate that the flipflop can be set or reset 
by living a LOW pulse. . 

Fig. 11.46: Xh.?Morgan equivalent of NAND gate RS flipflop. 
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Fig. 11.47: Synibol of RS flipflop. 

Example 11.10 

If the train of pulses given to the S and R inputs of SR flipflop are as shown in 
Fig. 11.48(a) and (b) respectively, then trace its Q output. Initial value of Q is given to 
be 0. 

Solotiol~ 

Using Table 11.17, the Q output of the RS flipflop is as shown in Fig. 11.481~). 

Fig. 11.48: Set/Reset pulses and the output. 

SAQ 10 

What is the shape of the Q outpbt of RS flipflop if Lhe S and R inputs me as shown in 
Fig. 1 1.491 Initial value of Q is given to be 1. 

11.4.2 Clocked RS Flipflop 

Computers use thousand of flipflops. To coordinate the overall action, a square wave 
signal called the clock is sent to each flipflop. The clock is applied to all flipflops 
simultaneously; this ensures that. they all change stales in unism. This synchronization 
is essential in many digital systems. 

In most of the synchronous systems the outpul can change only wi~en the clock signa1.i~ 
making a transition from 0 to I ,  i.e. positive going transition (PGT) or 1 to 0, i s .  
negative going transition (NGT), These systems are known as edge triggered. The PGT 
and NGT are shown in Fig. 11.50. The symbols of edge triggered RS flipflop which 
work with PGT and NGT are shown symbolically in Figs. 11 -51 (a) and (b) respectively. 



Digital Electronics Note the dil'fercnce in sy~nbol of clock activated by a PGT and NGT. The change in  thc 
control inputs R and S to thc flipflop will not effect a change in the Q output until an 
active clock (CLK) transition, i s .  a PGT in case of Fig. 11.51(a) and a NCT in case of 
Fig. 11.51(b), occurs. The control inputs keep thc flipflop ready to change and the active 
clock transition at the CLK input actually triggers the change. To ensure that a clocked 
flipflop responds properly when the active clock transition occurs, the inputs must be 
stable, i.e. unchanging. 

cgativc Going Trio~ition (NGT) 
(Change h.on11 10 0 )  

\~os t ive  going ~riinsition (PGT) 
(Change rrom 0 to 1) 

Fig. 11.50: Positive and negative going transitions. 

Control 

CLK ac~iva td  by a NOT 
(4 (b)  

Fig. 11.51: Symbol of edge triggered flipflop activated by a (a) PGT, anrl (1)) NGT. 

Cnnsitfcr the circuit give11 in Fig. 11.52 in which two additionlxl NAND gates are uscd 
as the clock pulse steering circuit and is triggered by a PGT. A LOW (i.e. 0)  clock 
CLK prevents S and R from controlling the fliptlop, because with whatever values of 

. S 

I 
7 

I 
CLK I 

I 

Fig. 11.52: Circuit of edge triggered RS flipflop. 

S and R the outputs of the NAND-1 and NAND-2 will be 1 which will not produce any 
change in the Q output of the flipflop. However, when the CLK is HIGH (i.e. 1) and 
S = R = 0, the: outputs of the two NAND gates will be 1 and there would be no change 
in the Q output. 



Table 11.18 shows the truth table for a positive edge triggered RS flipflop. The Q =. Q 
is output level before the arrival of the POT of the CLK. I'he arrow directed upward (f) 
indicates that a PGT is required at the CLK. 

Table 11.18: Truth table for a positive edge triggered XS flipflop. 

The inputs S and R, and corrcsponding Q output, assuming the inilial value of Q, i.e. 
Q, equal to 0, are as shown in Fig. 11.53. It is clear that at the arrival of lirst clock 
transition both R and S are 0, therefore there is no change it1 the Q output which 
continues to be 0. But at tlie arrival of the second cluck transition S is 1 and 1E is 0, 
this sets the flipflop with Q = 1 which does not change till lhird clock transition. At the 
time of the third clock transition R is 1 and S = 0 which resets the fipllop with Q = 0. 
This is how the Q output is traced. Note that bctwcen two PGTs of the CLK, the Q 
output does not change. It must be renlelnbered that whenever tracing a Q output 
corresponding to the inputs, you have to look for the active clock, note llae values of 
inputs nand then decide the value of the Q output. 

Inputs 

R S CLK 

0 0 'r 
0 1 t 
1 0 t 
1 .  1' I. 

Fig. 11.53: Inputs and output of a clocked RS flipflop. 
/ 

The truth table of a RS flipflop trigger& by a NGT is ishown in Table 11.19. 

Output 

Q ---- 
Qo (NO change) 

1 

0 

*Race 

Table 11.19: Truth table for negalive ed,: triggered RS flipflop, 

Inputs I output 

R S CLK 

O O L  

0 1 L ; 
1 0 L .  
1 1 L  

Q 
, Q (No change) 

1 

0 

*Race 



Digital Electronics The PGT or NGT can be obtained by using a combination of gates or a differentiating 
circuit consisting of a capacitor and a resistor. 

SAQ 11 . 

If the train of pulses to S and R inputs of a clocked RS flipilop are as shown in 
Fig. 11.54, and if the initial value of Q is 0, trace its Q output. 

Pig. 11.54: 

Fig. 11.55: Circuit for D flipflop. 

11.4.3 Clocked D Flipflop 

The RS flipflop has two inputs S and R. Generating two signals lo drive a flipflop is a 
disadvantage in many applications. Furthermore, the race condition of both S and R low 
may occur inadvertently. In order to eliminate the possibility of a race condition a new 
kind of flipflop is designed. This is called a D flipflop. The letter D slands for tlie data. 
The dita input is given to S-input of the RS flipflop while the same input goes to its 
R-input through an inverter a? shown in Fig. 11.55. The symbol of the edge triggered 
D flipflop activated by a PGT is shown in Fig. 11.56. Its truth tablc is given in 
Table 11.20 which shows that the Q output of D flipflop follows the input data D. 
The D input and corresponding Q output, assuming initial Q to be I ,  are shown in 
Fig. 11.57. 

Fig. 11.56: Symbol 00 D flipflop. 



'rahle 11.20: Truth table fur a positive edge triggered D flipflop. 

Fig. 11.57: Input and output of a D flipflop. 

Q Latch 

Sometimes edge trigger detecting circuit (like RC combination) for D flipflop is not 
used. In this case the D flipflop functions slightly differently and is known as D latch. 
Instead of edge triggering, level clock or an ENABLE (abbreviated as EN) signal is 
used as shown in Fig. 11.58. When ENICLK is 1, D will produce a 0 at either SET or 
CLEAR inputs of the NAND latch to give a Q output to be at the same level of D. 

l Fig.11.58: Circuit for D latch. 

When EN/CLK is 1, if D changes, Q will ibllow changes exactly like D as the Q output 
does not have to wait for the clock tl-ansition to respond to changes in D. The D latch is 
thus 'transparent' to the input in this mode. When ENJCLK 1s at 0, D is inhibited from 
affecting NAND latch because the outputs of both steering NAND gates will be I. Thus 
Q and Q continue to stay wherever they were before ENICLK became 0. In other 
wol-ds, the outputs are latched to their current level and cannot change during the period 
ENICLK is 0, even if D cl~anges. The truth table of D latch is given in Table 11.21. 

Table 11.21: Truth table for'D latch. 

Pundnn~entnls of Baolcnn 
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Quite often two AND gates are introduced between the pulse steering circuit and the 
NAND latch as sl~own in Fig. 11.59. One inpat each of these AND gates are known as 
RESET (direct SET) and CLEAR (direct RESET) and are kept at 1 so as to allow the 
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D 

CLK 

1 ~1 .w  (Reset) 

Fig. 11.59: Edge triggered D flipflop with preset and clear. 

A 
Fig. 11.60: Symbol of edge triggered D flipflop with preset and clear. 

output of pulse steering circuit to pass through. However, if we want to set the flipflop 
irrespective of the value of D input, then' give a 0 to PRESET which will set the . 

ilipflop. Similarly, by giving a 0 to clear will directly reset Lhe flipflop, The symbol for 
D flipflop with PRESET ilnd CLEAR is shown in Fig. 11.60 and its truth table, is given 
in Table 11.22. 

Table 11.22: Truth table for clocked D flipflop with preset and clear. 

preset Clear CLK D I Q 

SAQ 12 
I 

The D input to a positive edge triggered D flipflop is as shown in Fig. 11.61. Trace the 
Q output. 

I 

CLK 

1 

Fig, 11.61: 

3.- 
-- - 

,, 1) L 

- -I -  

L - -  

~r r I I I  



111.4.4 Clocked JK Flipflop 

In the next unit, we show you how to build a counter, n circuit that counts the number 
of positive or negative clock edges driving its clock input. When it comes to circuits 
that count, JK flipflop is the ideal element to use. Therefore before ending this unit we 
will study about JK flipflop. 

The circuit for an edge triggered JK flipflop is shown in Fig. 11.62 and its symbol is 
shown in Fig. 11.63. The working of JK flipflop is same as that of RS flipflop 

J 

CLK 

K 

Fig. 11.62: Circuit for edge triggered JM flipflop. 

1 Fig. 11.63: Sy~nbol of edge triggered JK flipflop. 

except $at race condition is not there. That is, there is no ambiguous result. The outputs 
1 Q and Q of the NAND latch are fedback to NAND-? and NAND-1 respectively of the 

. pulse steering circuit which gives toggle operation. With J = K = 1, assume that Q is 0 . 
I 'when clock transition arrivcs. With Q = 0 and Q = 1, NAND-1 will steer PGT to set 

the NAND latch to give (.j = 1. If we assume Q = 1 when PGT of the clock appears, 
NANLI-2 will steer PGT to clear the NAND latch to produce Q = 0. Thus Q always , 

ends up in opposite state. This is known as the toggle mode of, operation. If both J and 
K are left to a state of 1, the flipflop will change state for each clock transition. The Q 
output equal to Qo means that the new value of Q will be inverse of the value it had 
prior to the PGT. The truth table of this flipflop is given in Table; 11.23. Fig. 11.64 
shows J and K inputs and the corresponding Q output. 

Table 11.23: Truth table for a positive edge triggered JK flipflop. .- 

Fundamentals of Boolem 
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J K CLK 

o o 'r 
1 0 'r 

Q 
Q (NO change) 

1 



Fig. 11.64: Inputs and output of JK flipflop. 

The symbol for edge triggered JK flipflop which is activated by a NGT of the clock is 
shown in Fig. .11.65 and its truth table is given in Table 11.24. 

K 

fig. 11.65: Symbd of edge triggered JK flipflop activated by a NGT. 

- - 
CLK ,, I {  t~ I &  I I I b 1 ,  I 

- - - -  - - -  

- 

- - - -  

Table 11.24: Truth table for a negative edge triggered JK flipflop. 

7 

I' # 
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J K CLK 

0 0 'r 
1 0 'r 
0 1 'r 
1 I 'r 

- 

The J and K inputs to a JK flipflop are as shown in Fig, 1.l.66. If the initial value of Q 
output is 0, trace the Q output. 

Q 

Q,, (No change) 

1 

0 

Q (Toggle) 



11.5 SUMMARY 
Fundamentals of Boolean 

Algebra and Flip Flops 

' 9 There are three basic logic gates -AND, OR and NOT. The output of an AND 

I gate is 1 only when all the inputs are 1. The output of an OR gate is 0 only when 
a11 the inputs are 0. The output of a NOT gate is complement of the input. 

I 
8 The AND and NOT gates are combined to get the NAND gate and OR and NOT 

gates are combined to get NOR gate. The NAND and NOR gates are known as 
building blocks in digital circuitry because AND, OR and NOT gates can be 
obtained using NAND and NOR gates only. 

9 All logic gates and circuits work in binary mode, that is the inputs and outputs 
can have values either 1 or 0. Therefore, the boolean algebra is used to describe 
their input-output relationships, the basic boolean rules or theorems are obtained 
from the truth,tables of three basic gales. 

o A digital circuit can be expressed as a boolean expression and likewise a logic 
circuit can be obtained from a boolean expression. A boolean expression can be 
simplified which gives us a simplified digital circuit. I n  all applications, first a 
boolean expression is simplified to give a simpler circuit. 

9 A boolean expression can also be obtained from a truth table. And a truth table 
can be obtained from a. boolean expres'sion without reference to its logic circuit. 
The boolean expression is written in the Sum-of-the-Product (SOP) form which is 
simplified to get the Minimum-Sum-of-the-Product (MSP) form. The MSP 
expression is used to write the final digital circuit. 

@ Exclusive - OR and exclusive - NOR gates are obtained by the combinations of 
three basic gates. The output of the XOR gate is 0 if both the inputs are same and 
is 1 if both the inputs are different. The output of the XNOR gate is 1 if both the 
inputs are same and is 0 if both the inputs are different. 

9 A half adder adds two bits binary numbers while a full adder adds three bits. The 
half and full adders are combined to add two multi-bit l;inary numbers. 

@ The combinational logic circuits do no have memory, that is output of such 
circuits do not depend on the previous occurrence of an event, The input-output 
relationship of these circuits is precisely defined by its truth table. 

e The RS flipflop is the basic element which has memory, that is its output depends 
on the previous occurrences of an event. The input of a RS flipflop can also be 
triggered by a clock by using a pulse steering circuit. The other flipflops are D I 

and JK flipflops. The output of the D flipflop follows the input. The race 
condition of RS flipflop is avoided in JK flipflops. 

e The RS, D and JK flipflop can be triggered by a positive going transition (PGT) 
or a negative going transition (NGT). These flipflops are used as' memory devices. 

1 11.6 TERMINAL QUESTIONS 

I 1. Simplify the expression Y = A ~ D  + AEC 

/ 2. Simplify the expression Y = BCD + A ~ C D  and find.its MSP form. 
---- ---- / 3. Simplify the expression Y = ABCD + ABCD. 

1 4. Simplify the expression Y = (A + BC) . (D + FG) 

I 5. Write boolian expression for the truth table given in Table 11.25. 



Digital Electmdu Table 11.25: 

6. Write boolean expression for the truth table given in Table 11.26. 

Table 11.26: 

Write boolean expression for the truth table given it1 Table 11.27. 

Table 11.27: 

Write boolean expression for the truth table given in table 11.28. 



Table 11.28: F~~ndamcntals of Boolcan 
Algebra and Flip Plops 

I 9. Write the truth table for the expression obtained in  question No. 2 above. 

10. Writc the truth table for the expression obtained in  question No. 3 above. 

I I. Write thc truth table for the expression obtained in question No. 5 above. 

1 12. Write the truth table for the expression obtained in question No. 8 abovc. 

1 13. Draw a digital circuit for u 5-bit binary adder. 
- / 14. Design a digital circuit for Y = AC + AD. 

15. Design a digital circuit for expression of question No. 14 using NAND gates only. 

1 15.7 SOLUTIONS AND ANSWERS 

1 Fig. 11.67: 

Fig. 11.68: 



Fig. 11.70: 

5. Y = G C , +  ABC+ ABC 

6. Using tb reasoning method, Y = 1 when either or all of AB. 

BC, and CAiare 1. Thus we get the truth table as follows: 

Table 11.29: 

A B C l  Y 

Fig. 11.71: A 2-bit binary adder. 



9. Digital circuit for Y = A + BC is as shown in Fig. 11.72. 

Now replace OR and AND gates by their NAND equivalents as shown in Fig. 11.73. 

I 
A* I 

, - - - - - - - - - - - 
I 
I 

BT 
I 

C 
I H--- --------- +I *-----me----- W I 
I NOT I I NOT I 1+. ------------ --------------- ---------------- OR -------------------a 
I I I +I 

Removing the combination of a NOT gate followed by a NOT gate, we get the circuit 
as shown in Rg. 11.74. 

! 

Pig. 11.74: 

Alternatively, simplify the expression using DeMorgan's theorem as follows: 

- -  
= A - B C  

, This equation gives the circuit already obtained in Fig. 11.74. 
I 

Ng. 11.75: 

Fig. 11.76: 
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Fig. 11.78: 

- 
= AB. 

2. Y = BCD + AB-CD 

= CD (I3 + A) 

= CDB +CDA. 
---- ---- 

3. Y = ABCD +ABCD --- 
= ABD (C + C) 
= ABD. 

(A + BC) . (D + FG) 

~+=+D+G - -  - -  
A.BC + D - F G  

A. (E +C) +Dm@+ 5) 
AB+E+DF+DG.  
--- 
ABC + k E +  ABC -- 
AC (B + B) + AC (B + B) 
K ~ + . A C .  
- 
ABC + ABE. 
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Fig. 11.79: A 5-bit binary adder. 

Fig. 11.80; Digital Circuit for Y = XC + AB. 

- 
Fig. 11.81: Digital circuit for Y = AC + 0 using NAND gates only. 




